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Abstract

Aim : We investigated the use of non-linear, multidimensional factor analysis for the study of observational data on death from
breast cancer. These data were obtained in the context of a clinical practice and not in a clinical trial. We looked into the
correlations between patient characteristics and time of death and/or disease-free interval. Patients and methods : We first analyzed
the characteristics of a population of patients that had died from breast cancer (n=295), then of a population including patients
still alive 7 years after surgery (n=344). We used correspondence analysis (CA) which is based on x2-metrics, does not assume
linear relationships, and provides graphic overviews. Results : The CA mapped variables (clinical stage, histoprognostic grade,
node status, receptor positivity) in a way that fits in well with available knowledge on their importance as prognostic factors. We
observed, however, that death occurred during three main periods (1–3, 4–7, 58 years after surgery) defined by different mixes
of variables as if the disease progressed by stage rather than continuously. The CA distinguished long-term survivors (\7 years)
from patients who died 8–10 years after surgery. Long-term survivors tended to be node-negative; those who died at 8–10 years
tended to be the youngest patients (under 40). Conclusions : Because correspondence analysis combines the advantages of
multidimensional and non-linear methods, it is a valuable exploratory tool for describing multiple correlations within a population
before attempting to establish statistical significance of selected variables by more classic methods. © 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Clinical trials relating to prognostic factors and sur-
vival in breast cancer patients tend to follow a fairly
standard pattern. Increasingly, they are prospective
randomised controlled trials (RCT) or cohort studies,
whose results are usually analysed by accepted statisti-
cal methods such as Cox’ proportional hazards regres-
sion model to assess the relative importance of the
chosen covariates, the Kaplan–Meier method to esti-
mate survival, and the log-rank test to compare survival
curves. This type of approach is considered by physi-
cians and biometricians alike to provide some of the
best and strongest evidence.

Although this may often be the case, it is unfortunate
when a single prevailing paradigm tends to overshadow
other ways of obtaining evidence. There are important
questions that need to be addressed such as: How can
we learn about the natural history of diseases? How can
we best extract useful information from retrospective
data? RCTs tell us about selected populations, but how
can we find out more about individuals and their
profiles? Moreover, are the statistical methods currently
in use always the most appropriate? The Kaplan–Meier
estimator is a non-parametric estimate of survival dis-
tribution but it only considers a single covariate at a
time. The Cox’ proportional hazard method assumes
that the logarithm of the hazard rate is a linear function
of the covariates, but is this true as often as we are led
to believe? The assumption of linearity can be examined
[1] and fit can be improved, but why rely exclusively on
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a linear model for the study of a complex dynamic
system such as the development and progression of
breast cancer? Since complex systems are rarely linear
[2], why assume that the time-schedule governing dis-
ease development is continuous and linear? Might not
the effects of covariates change over time?

Our contention is that before embarking upon
lengthy and costly clinical trials, it might be useful to
perform more preliminary exploratory research on ret-
rospective data collected in clinical practice. Such data
does contain evidence; it is part of the basis of our
experience. The fundamental question is how to extract
this evidence and how to judge its relevance.

In the present paper, we have looked at observational
data collated over many years on breast cancer pa-
tients. We analysed these data using correspondence
analysis (CA) [3–6], a factor analysis which has analo-
gies with principal components analysis (PCA).
Whereas PCA uses covariance, CA is based on x2-met-
rics and is thus ideally suited to the analysis of contin-
gency tables. Advantages of CA are that it (i) provides
simple graphic overviews of complex systems [7], (ii)
does not arbitrarily choose an independent variable,
and (iii) does not assume linearity [8].

CA is in increasingly widespread use in a variety of
scientific fields essentially outside the realm of medicine.
In the cancer literature, we are aware of a couple of
early papers [9,10] and of a mention in a review [11]
referring to results in abstract form only [12]. More
recently, CA was used to select variables for building a
predictive index of axillary nodal involvement in opera-
ble breast cancer [13] and in a study of patients with a
high-risk of relapsing from prostate cancer [14]. We
have provided a brief introduction to CA as a mapping
aid to clinical judgment [15] and already used CA to
analyse (i) structure-activity data on potential anti-can-
cer agents and other molecules [6,16,17] and (ii)
changes in plasma hormones with treatment and age in
patients with prostate cancer [18,19]. Here we empha-
sise its role as a research tool to describe patient
populations.

2. Patients and methods

The medical files of patients who had undergone
surgery for breast cancer (mastectomy or tumorectomy)
at the Jean Paoli-Irène Calmettes Institute in Marseilles
(Department of the late Professor J.M. Spitalier and of
Dr D. Hans) between May 1976 and May 1988 were
retrospectively reviewed in order to count (i) the num-
ber of women deceased from cancer within 1, 2, 3, etc.,
years of surgery and (ii) the number alive with a
disease-free survival (DFS) of more than 7 years. All
the women had been followed up on a regular basis
either at the Institute or in a private oncology clinic for

at least 3 years (unless deceased earlier) and a maxi-
mum of 15 years.

For each year of death and for a disease-free survival
of more 7 years, the number of patients in each of
several categories was recorded (Table 1). These cate-
gories were based on age (four categories), thermogra-
phy results (hot or cold), tumor location (uni- or
bilateral), clinical disease stage (I–IV), number of in-
vaded lymph nodes (seven categories), histoprognostic
SBR (Scarff-Bloom and Richardson) tumor grade (I–
III), and, when available, estrogen (ER), progesterone
(PR), and androgen (AR) receptor positivity. Receptors
had been assayed in a single regional laboratory using a
routine radioligand assay; AR assays were initiated in
1981 [20]. Most importantly, for each variable, a ‘miss-
ing data’ category was included to check whether these
data were indeed missing at random (i.e. were not
selected in any way) and thus did not bias the study.

2.1. Multi6ariate factor analysis

Correspondence analysis (CA) is a method of multi-
dimensional data reduction which uses x2-metrics and
which is therefore highly suited to the analysis of
categorical variables. The most common application of
CA is the analysis of frequency (contingency) tables
such as Table 1. In the first seven columns of Table 1,
the 295 women who died of breast cancer have been
classified according to several variables (traits) and by
year of death. The data of this part of the table were
converted into percentages (total of each row=100%),
then into x2-distances between each trait and year of
death. The resultant symmetrical semi-square probabil-
ity matrix was analysed by CA (for full mathematical
details, see Refs. [3–6]) using an in-house program
written by one of us (J.C.D.). (CA is nowadays in-
cluded in commercial software packages from SAS
Institute; BMDP Statistical Software; SPSS …).

CA uses the original variables (traits) to calculate
new variables (factorial axes) which are different mixes
of the original variables (i.e. composite traits). Unlike
the initial variables, the composite traits are orthogo-
nal, i.e. each factorial axis describes an independent
chunk of information. Furthermore, CA filters total
information by breaking it down into a ranked series of
n−1 factorial axes of decreasing inertia t

(81,82,83,…, 8n−1 where n is the number of matrix
columns).

CA is a graphic method. We can plot the original
variables using their calculated coordinates to the facto-
rial axes. Moreover, we can plot both row and column
variables (traits and death years) on the same graph
because the x2-distance matrix is symmetrical. (An in-
teresting option not addressed in this paper is to depict
patients and traits on the same plot [19]). In a factorial
plot, the more clustered the variables, the stronger the
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correlations between them (as long as the variables
contribute substantially to the chosen factorial axes).
The absolute contribution (AC) of a variable to a
factorial axis is its degree of involvement in the consti-

tution of the axis (SACs of all variables=100% for any
axis); the relative contribution (RC) of a variable tells
us how its information content is distributed over the
axes (SRCs of each variable to all axes =1). A theoret-

Table 1
Retrospective data on 639 breast cancer patients (295 dead, 344 alive)a

Number of deaths DFS \7 years

Total2 years 3 years 4 years 5 years 6–7 years1 year 8–10 years Total

Age
36B40 years 4 5 10 5 3 6 6 39

40–55 years 1428241211 8122312
10 15 37 14 7 14 5 102 12355–70 years

2716\70 years 11 14 2 1 5 1 50
2 22 16Missing 6 9 03 1 1

Thermography
809 101.2 (cold) 79 6 10 3 54

15335 604.5 (hot) 1830 10 27 7 187
8 11154624Missing 9178

Laterality
42 45Unilateral 30925578 12331629

5 7 9 5 4 6 4 40 35Bilateral

Stage
14 17 25 17 14 18 9 114I 218

II 9910171411 4123320
11 13 25 5 1 4 0 59 26III

12 4IV 011 1 3 0 21

Tumor grade
3 4 6 4 2 7 3 29I 96

19 22 40 19 7 17 7 131II 150
451114107III 9392022
536 2 2 4 5 2Missing 243

Lymph nodes
5 6 5 8 6 5 0 350 93
1 3 3 2 1 1 1 121 38

20233222 3922
53 133–4 23 2 7 3 33

5–7 827012 14118
3 4 7 2 0 0 0 16 18–10

15 12\10 211 1 1 0 32
22 117 178Missing 20 21 927 11 7

Steroid receptors
4918 25ER− 818 5 6 2 82

10524 49ER+ 1821 11 18 1 142
1907113154ER missing 813108
72PR− 1928 46 12 9 9 1 124

10PR+ 5993223 1261426
9 10 15 8 5 18 13 78 213PR missing

NA16 30AR− 417 2 2 2 73
1 2 1 1 0 1 0 6 NAAR+

34AR missing NA216143629 182956

Supplementary data
ER−PR− 1515 22 6 4 4 0 66

6ER+PR− 11 12 23 5 6315
4 9 24 12 5 10 0 64ER+PR+

a DFS, disease-free survival; NA, not available. The cut-off levels for positivity were ER \10 fmol/mg prot., PR ]10 fmol/mg prot., AR ]50
fmol/mg prot.
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ical index (l) indicates how well founded are the rela-
tionships among the variables for a given axis. A
maximum value of 1 for l means that one group of
variables under study is totally distinct from the others;
a value for l that approaches zero is a sign of a random
distribution.

In summary, CA produces plots of the inherent
structure of a complex system described by a dataset by
stratifying the information within this dataset according
to its inertia (creation of factorial axes) and by high-
lighting correlations (linear or not) among all variables
(creation of factorial plots).

3. Results

Our correspondence analyses concern 295 women
who had died of cancer, and 344 who had survived for
more than 7 years after surgery. At the time of analysis,
38 women were lost to follow-up and 17 had died of
unknown causes. The remainder were alive but had not
yet reached 7 years of survival. The median follow-up
was 10 years.

3.1. Profiles of the patients who died

The break-down of the 295 deaths from breast cancer
according to time of death (columns) and traits (rows)
is given in Table 1. The results of the CA of the first
seven columns of this table (excluding supplementary
steroid receptor data) are shown in the 8182 factorial
plot of Fig. 1 which depicts 70% of the total inertia (81:
52.7%; 82: 17.3%). This is the most high-ranking, co-
herent and discriminatory information; quirks and
noise have been relegated to lower axes. The overall
plot has been subdivided into five superimposable pan-
els (A–E) for the sake of readability. The relative
positions of the column variable, year of death, are
shown in panel 1A and those of row variables (traits) in
panels 1B–E. Mock variables (missing data categories
in Table 1), although they were included in the calcula-
tion, are not shown. Missing data did not constitute a
bias in the study (i.e. were not selected) but occurred
randomly.

In panel 1A, the years of death follow a typical
Guttman curve [21]. Their projections on the 81 axis
are in perfect chronological order with a single inver-
sion. Year 3 comes before year 2. These years are close
because the studied variables can hardly distinguish
them. The projections of death years 4, 5 and 6–7 onto
the 81 axis are also clustered. It thus seems that we are
dealing with three major time-phases: death at 1–3
years, 4–7 years, and 8–10 years after surgery. In other
words, if we consider the predominant 70% of the
inertia (8182), the disease seems to progress through
stages defined by different sets of variables. If, on the

other hand, we consider just the first 53% of the inertia
(81), we find that the plot of the 81 coordinates of the
timepoints against calendar years is virtually linear
(r=0.981) (not shown). Apparently, a mix of variables
accounting for the main 81 factorial axis evolves
linearly.

Clustered variables within factorial plots are corre-
lated as long as they do not lie too far above or below
the plane of the plot. Thus a trait located close to a
given year of death may be an indicator of death at this
time. Patients over 70 tended to die of their cancer
within 1 year of surgery whereas some of the youngest
patients displayed the longest survival times (over 6
years) (panels A and B). Bilateral cancers tended to
occur in the under 40s (panel B). More than four
invaded lymph nodes was a sign of a bad prognosis
(death within 3 years) but there was no clear-cut rela-
tionship between node number and death for four or
less invaded nodes (panels A and C). Death 8–10 years
after surgery was not correlated with node status but
with young age (B40 years old). The more poorly
differentiated the tumor and, in particular, the more
advanced the clinical stage of the disease, the sooner
the patients died (panels A and D). The presence of any
one of the three steroid hormone receptors (PR, ER,
AR) postponed death slightly (panel E). PR postponed
it most (furthest to the right). However, the long-term
prognostic value of no receptor reached that of either
clinical disease stage or tumor grade. This may be
because the numbers of patients in whom receptors
were determined in the longer surviving groups were
small (Table 1) and/or because steroid receptors lose
their relevance as molecular targets for therapy after
�4 years when some tumors had acquired hormone
independence [22]. Thermography results (not shown)
were not discriminatory in line with the conclusions of
the consensus conference on mammography held in
1977 [23].

In summary, the 8182 factorial plot provides a pic-
ture of the core information relating to the population
of deceased patients. Later death was a feature of the
youngest patients, those with low stage disease, low
grade tumors, receptor-positive tumors, and/or those
with four or less invaded nodes.

3.2. Correspondence analysis of steroid receptor data

The receptor data form a perfectly valid multidimen-
sional system in their own right. A CA of these data for
the deceased patients of Table 1 yielded Fig. 2 in which
years of death are represented by hollow circles and
receptors by black dots. Using this CA as a mathemat-
ical model, we introduced the supplementary data on
combined ER.PR positivity given at the bottom of
Table 1 (see stars). Despite the shortcomings of the
data (number of missing values especially for AR), this
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Fig. 1. CA plots of cancer death data (first seven columns in Table 1). (A) Plot showing death years (column variable). (B–E) Plots showing row
variables: age, uni- or bilateral breast cancer, clinical stage (S), node status (N), histoprognostic grade (G), steroid receptor positivity (ER, PR,
AR: estrogen, progesterone and androgen receptors; + positive, − negative). All plots are superimposable (w, origin of the axes). The plots
show the two main factorial axes that are derived from the data matrix and which together represent 70% of the most discriminant information
in the matrix.

CA plot highlights several important points: (a) recep-
tors are relevant for up to 5 years only with a difference
between 1–3 years and 4–5 years, (b) receptor positiv-
ity is a sign of a slightly better prognosis, (c) PR is a
better prognostic factor than ER, (d) AR is equivalent
to PR but this result should be viewed with caution
because of the limited number of AR determinations,
(e) ER and PR are independent prognostic factors
because, in Fig. 2, ER+PR+ (or ER−PR−) is located
at the apex of a parallelogram that can be drawn using
the three points: origin, ER+ and PR+ (in analogy to a
parallelogram of vectors).

3.3. Patients still ali6e after 7 years

Table 1 also provides data on 344 patients with a
disease-free survival (DFS) of more than 7 years and
who were still alive at the time of analysis. A global CA
on the 295 dead women and these 344 women —
excluding however the rather fragmentary AR data —
was performed in order to find out if and how inclusion
of these women into the analysis affected the results.

Fig. 3 depicts 83% (81: 72.0%, 82: 10.9%) of the
inertia of the combined data. There is a surprisingly
small shift in the positions of most variables when we
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compare this figure to Fig. 1. The 5 and 6–7 death
years have moved somewhat closer to each other. How-
ever, the introduction of the patients with \7 year-
DFS has essentially reorganised node status when there
are less than five invaded nodes and repositioned the
under 40s. This is because the profiles of the \7
year-DFS patients and 8–10-year death patients are
most different with respect to these variables. The \7
year-DFS patients have acted as an attractor in a force
field. They have drawn toward them the traits that
describe them best (grade I tumors, stage I disease, no
or only one invaded lymph node (see shaded area)) and
repelled others (chiefly three to four involved nodes).
Clearly, nodal involvement is detrimental to long-term
survival. Patients who died between 8 and 10 years
tended to be the youngest patients (B40 years of age)
(see shading). This correlation was highlighted by the
83 axis (not shown).

4. Discussion

Most of the correlations between either death from
cancer or long-term DFS, on the one hand, and patient
or tumor characteristics, on the other, noted in this
study are hardly novel. This is because we analysed
variables with relatively well-established prognostic
value. The interesting point is that CA of retrospective

Fig. 3. Superimposable CA plots of a data matrix of deaths and DFS
(first seven columns and last column of Table 1, excluding androgen
receptor data). The two main factorial axes represent 83% of the most
discriminant information in the data matrix (for abbreviations, see
legend to Fig. 1).

Fig. 2. CA plot of the steroid receptor data in the first seven columns
of Table 1 (�, death years; 	, single receptor; *, receptor combina-
tions; w, origin of the factorial axes). The plot shows the two main
factorial axes that are derived from the receptor data matrix and
which together represent 91.5% of the most discriminant information
in the matrix. The receptor combinations (ER PR) were added as
supplementary variables to the CA performed on single receptors and
used as a mathematical model.

clinical practice data supported current knowledge and,
moreover, provided a visual overview. It confirmed the
limitations of steroid receptor assays as prognostic fac-
tors, the relative value of each receptor, and the impor-
tance of lack of nodal involvement in long-term DFS.
Patients with four or more involved nodes at initial
diagnosis suffered from a more aggressive form of
disease [24,25]; they died earlier. Unfortunately, no
systematic data on tumor size was available.

In many statistical analyses, time is taken as a rather
special variable, a yardstick that is set apart and against
which changes in other variables are measured. How-
ever, CA treats time no differently from the other
variables; it derives correlations among all variables
including time, and seeks the timescale (‘inner clock’)
that best relates to the data. It discovered, on the basis
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of our data, that years have a chronological order but
decided that there were three different epochs for dying
each described by different mixes of variables (com-
posite traits). There is a first stage from 1 to 3 years, a
second from 4 to 7 years, and a third between 8 and 10
years as if there were different disease states. It is
interesting to relate this observation to the biphasic
trend in relapse (a peak at 3 years and one between 7
and 9 years) noted in at least two studies [26,27]. CA of
a greater volume of data might afford an optimal
partitioned categorical coding of time that might prove
valuable in future hypothesis-testing analyses.

Our CA has also highlighted a difference between the
profiles of women who died between 8 and 10 years
after surgery and those who survived beyond 7 years.
Most of the survivors had grade I tumors, no or only
one invaded lymph node, and stage I disease. Those
who died between 8 and 10 years were characterised
mainly by their youth (B40 years) as if this, rather
than any other feature, determined the nature of their
disease. They were also the patients who tended to
present bilateral disease. Age at first primary has been
shown to be a determinant of the incidence of bilateral
breast cancer [28]. This observation is in line with the
possible hereditary nature of some cancers in younger
patients.

When the results for an additional variable are avail-
able for all patients of a study, these can be introduced
into existing CA biplots used as mathematical models
[6]. The principle of adding extra variables is briefly
illustrated in this study using supplementary data on
steroid receptors. To be able to add data means that
records have been well kept and are complete. Al-
though our data have shortcomings, they are neverthe-
less reasonable for a hospital-cum-private practice in
the 1970–1980s not taking part in a controlled study.
They were breast cancer patients from one and the
same catchment area followed by the same clinical
team. Moreover, in our analyses, we took the precau-
tion of checking that missing data were not selected in
any way and did not create a bias.

The major criticism that can be directed against the
use of CA in the study of retrospective survival data is
that it does not account for censoring. Much justified
emphasis is laid on possible biases in the analysis of
censored data [29]. However, in our mind, the criticism
is only partly valid for CA since CA filters information
and extracts that which has the most coherence. It finds
out how the major relationships within a complex
dynamic system are organised. The quirks, background
noise, and also the bias due to censoring would be
relegated to lower-order factorial axes as long as the
amount of censored data is not overwhelming.
Combining differently censored data (deaths over 10
years and long-term survival at 7 years) did not upset
our core analysis but highlighted major differences
between population subsets.

The important point is that CA is not a statistical
method for testing hypotheses, but a method of data
analysis for seeking new hypotheses. Its role is not to
find answers to predefined questions but, by highlight-
ing correlations, to help experts define appropriate re-
search questions. For our demonstration, we selected
run-of-the-mill data and known variables and showed
that the results were in line with published data. The
method’s full potential lies in less well explored fields.
CA can deal with vast populations, a rather mixed bag
of variables (quantitative and qualitative), and, like
neural networks, with non-linear situations. It supplies
graphic displays of correlations among unselected vari-
ables and combines non-linearity with multidimension-
ality. Such advantages should not be ignored.
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